List of Papers 2013-2014

COMBUSTION-RELATED PAPERS PUBLISHED BY CI(BS) MEMBERS in 2013-2014

Members were invited to send their list of publications for 2013-2014. Those that did so reproduced here.The list is in alphabetical order of the surname of the first-mentioned author.

Abdulsada, M., Syred, N., Bowen, P., O’Doherty, T., Griffiths, A., Marsh, R., Crayford, A., 2013. Reprint of “Effect of exhaust confinement and fuel type upon the blowoff limits and fuel switching ability of swirl combustors”. Appl. Therm. Eng. 53, 2, 348-347.

Abou-Taouk, A., Sadasivuni, S., Lörstad, D., Eriksson, L.-E., 2013. Evaluation of global mechanisms for les analysis of SGT-100 DLE combustion system, in: Proceedings of the ASME Turbo Expo.

Abram, C., Fond, B., Heyes, A.L., Beyrau, F., 2013. High-speed planar thermometry and velocimetry using thermographic phosphor particles. Appl. Phys. B Lasers Opt. 111, 155–160.

Ahmed, I., Swaminathan, N., 2013. Simulation of spherically expanding turbulent premixed flames. Combust. Sci. Technol. 185, 1509–1540.

Ahmed, I., Swaminathan, N., 2014. Simulation of turbulent explosion of hydrogen-air mixtures. Int. J. Hydrogen Energy 39, 9562–9572.

Akhtar, S.S., Ervin, E., Raza, S., Abbas, T., 2013. From coal to natural gas: Its impact on kiln production, Clinker quality and emissions, in: IEEE Cement Industry Technical Conference (Paper).

Akinrinola, F.S., Darvell, L.I., Jones, J.M., Williams, A., Fuwape, J.A., 2014. Characterization of selected nigerian biomass for combustion and pyrolysis applications. Energy and Fuels 28, 3821–3832.

Aldawood, A., Mosbach, S., Kraft, M., Amer, A., 2013. Dual-fuel effects on HCCI operating range: Experiments with primary reference Fuels. SAE Tech. Pap. 2.

Aleiferis, P.G., Serras-Pereira, J., Richardson, D., 2013. Characterisation of flame development with ethanol, butanol, iso-octane, gasoline and methane in a direct-injection spark-ignition engine. Fuel 109, 256–278.

Aleiferis, P.G., Van Romunde, Z.R., 2013. An analysis of spray development with iso-octane, n-pentane, gasoline, ethanol and n-butanol from a multi-hole injector under hot fuel conditions. Fuel 105, 143–168.

Almgren, A.S., Aspden, A.J., Bell, J.B., Minion, M.L., 2013. On the use of higher-order projection methods for incompressible turbulent flow. SIAM J. Sci. Comput. 35, B25–B42.

Alzwayi, A.S., Paul, M.C., 2013. Effect of width and temperature of a vertical parallel plate channel on the transition of the developing thermal boundary layer. Int. J. Heat Mass Transf. 63, 20–30.

Alzwayi, A.S., Paul, M.C., 2014a. Transition of free convection flow between two isothermal vertical plates. Int. J. Heat Mass Transf. 76, 307–316.

Alzwayi, A.S., Paul, M.C., 2014b. Transition of free convection flow inside an inclined parallel walled channel: Effects of inclination angle and width of the channel. Int. J. Heat Mass Transf. 68, 194–202.

Alzwayi, A.S., Paul, M.C., 2014c. Analytical and numerical investigations of physical dimensions of natural convection flow on a vertical heated plate. Int. J. Fluid Mech. Res. 41, 353–367.

Alzwayi, A.S., Paul, M.C., Navarro-Martinez, S., 2014. Large eddy simulation of transition of free convection flow over an inclined upward facing heated plate. Int. Commun. Heat Mass Transf. 57, 330–340.

Amzin, S., Swaminathan, N., 2013. Computations of turbulent lean premixed combustion using conditional moment closure. Combust. Theory Model. 17, 1125–1153.

Anthony, E.J., Hack, H., 2013. Oxy-fired fluidized bed combustion: Technology, prospects and new developments, Fluidized Bed Technologies for Near-Zero Emission Combustion and Gasification.

Attivissimo, F., Lanzolla, A.M.L., Passaghe, D., Paul, M., Gregory, D., Knox, A., 2014. Photovoltaic-thermoelectric modules: A feasibility study, in: Conference Record – IEEE Instrumentation and Measurement Technology Conference. pp. 659–664.

Audouin, L., Torero, J.L., 2013. Special issue on PRISME – Fire safety in nuclear facilities. Fire Saf. J. 62, 79.

Ayala, P., Cantizano, A., Gutiérrez-Montes, C., Rein, G., 2013. Influence of atrium roof geometries on the numerical predictions of fire tests under natural ventilation conditions. Energy Build. 65, 382–390.

Azadi, P., Brownbridge, G., Mosbach, S., Smallbone, A., Bhave, A., Inderwildi, O., Kraft, M., 2014. The carbon footprint and non-renewable energy demand of algae-derived biodiesel. Appl. Energy 113, 1632–1644.

Bagdanavicius, A., Bowen, P., Syred, N., Crayford, A., 2013. Turbulent flame structure of methane-hydrogen mixtures at elevated temperature and pressure. Combust. Sci. Technol. 185, 350–361.

Bal, N., Raynard, J., Rein, G., Torero, J.L., Försth, M., Boulet, P., Parent, G., Acem, Z., Linteris, G., 2013. Experimental study of radiative heat transfer in a translucent fuel sample exposed to different spectral sources. Int. J. Heat Mass Transf. 61, 742–748.

Bal, N., Rein, G., 2013. Relevant model complexity for non-charring polymer pyrolysis. Fire Saf. J. 61, 36–44.

Balusamy, S., Hochgreb, S., 2013. Comparison of acoustic velocity perturbation measurements using PIV vs. twomicrophone technique, in: ASME 2013 Gas Turbine India Conference, GTINDIA 2013.

Balusamy, S., Li, L.K.B., Han, Z., Juniper, M.P., Hochgreb, S., 2014. Nonlinear dynamics of a self-excited thermoacoustic system subjected to acoustic forcing. Proc. Combust. Inst. accepted.

Balusamy, S., Schmidt, A., Hochgreb, S., 2013. Flow field measurements of pulverized coal combustion using optical diagnostic techniques. Exp. Fluids 54.

Barari, F., Luna, E.M.E., Goodall, R., Woolley, R., 2013. Metal foam regenerators; heat transfer and storage in porous metals. J. Mater. Res. 28, 2474–2482.

Biagioli, F., Paikert, B., Genin, F., Noiray, N., Bernero, S., Syed, K., 2013. Dynamic response of turbulent low emission flames at different vortex breakdown conditions. Flow, Turbul. Combust. 90, 343–372.

Black, S., Szuhánszki, J., Pranzitelli, A., Ma, L., Stanger, P.J., Ingham, D.B., Pourkashanian, M., 2013. Effects of firing coal and biomass under oxy-fuel conditions in a power plant boiler using CFD modelling. Fuel 113, 780–786.

Boot-Handford, M.E., Abanades, J.C., Anthony, E.J., Blunt, M.J., Brandani, S., Mac Dowell, N., Fernández, J.R., Ferrari, M.-C., Gross, R., Hallett, J.P., Haszeldine, R.S., Heptonstall, P., Lyngfelt, A., Makuch, Z., Mangano, E., Porter, R.T.J., Pourkashanian, M., Rochelle, G.T., Shah, N., Yao, J.G., Fennell, P.S., 2014. Carbon capture and storage update. Energy Environ. Sci. 7, 130–189.

Botero, M.L., Mosbach, S., Kraft, M., 2014. Sooting tendency of paraffin components of diesel and gasoline in diffusion flames. Fuel 126, 8–15.

Boulet, P., Parent, G., Acem, Z., Collin, A., Försth, M., Bal, N., Rein, G., Torero, J., 2014. Radiation emission from a heating coil or a halogen lamp on a semitransparent sample. Int. J. Therm. Sci. 77, 223–232.

Bragin, M. V, Makarov, D. V, Molkov, V. V, 2013. Pressure limit of hydrogen spontaneous ignition in a T-shaped channel. Int. J. Hydrogen Energy 38, 8039–8052.

Brennan, S., Molkov, V., 2013. Safety assessment of unignited hydrogen discharge from onboard storage in garages with low levels of natural ventilation. Int. J. Hydrogen Energy 38, 8159–8166.

Broda, M., Manovic, V., Anthony, E.J., Müller, C.R., 2014. Effect of pelletization and addition of steam on the cyclic performance of carbon-templated, CaO-based CO2 sorbents. Environ. Sci. Technol. 48, 5322–5328.

Broda, M., Manovic, V., Imtiaz, Q., Kierzkowska, A.M., Anthony, E.J., Müller, C.R., 2013. High-purity hydrogen via the sorption-enhanced steam methane reforming reaction over a synthetic CaO-based sorbent and a Ni catalyst. Environ. Sci. Technol. 47, 6007–6014.

Brownbridge, G., Azadi, P., Smallbone, A., Bhave, A., Taylor, B., Kraft, M., 2014. The future viability of algae-derived biodiesel under economic and technical uncertainties. Bioresour. Technol. 151, 166–173.

Bulat, G., Fedina, E., Fureby, C., Meier, W., Stopper, U., 2014a. Reacting flow in an industrial gas turbine combustor: Les and experimental analysis. Proc. Combust. Inst.

Bulat, G., Jones, W.P., Marquis, A.J., 2013. Large Eddy Simulation of an industrial gas-turbine combustion chamber using the sub-grid PDF method. Proc. Combust. Inst. 34, 3155–3164.

Bulat, G., Jones, W.P., Marquis, A.J., 2014b. NO and CO formation in an industrial gas-turbine combustion chamber using LES with the Eulerian sub-grid PDF method. Combust. Flame 161, 1804–1825.

Butcher, A.J., Aleiferis, P.G., Richardson, D., 2013. Development of a real-size optical injector nozzle for studies of cavitation, spray formation and flash-boiling at conditions relevant to direct-injection spark-ignition engines. Int. J. Engine Res. 14, 557–577.

Cai, W., Kaminski, C.F., 2014a. A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers. Appl. Phys. Lett. 104.

Cai, W., Kaminski, C.F., 2014b. Multiplexed absorption tomography with calibration-free wavelength modulation spectroscopy. Appl. Phys. Lett. 104.

Cairns, A., Zhao, H., Todd, A., Aleiferis, P., 2013. A study of mechanical variable valve operation with gasoline-alcohol fuels in a spark ignition engine. Fuel 106, 802–813.

Castellanos, J.G., Walker, M., Poggio, D., Pourkashanian, M., Nimmo, W., 2015. Modelling an off-grid integrated renewable energy system for rural electrification in India using photovoltaics and anaerobic digestion. Renew. Energy 74, 390–398.

Chadeesingh, D.R., Hayhurst, A.N., 2014. The combustion of a fuel-rich mixture of methane and air in a bubbling fluidised bed of silica sand at 700 \,^{\circ}c and also with particles of Fe 2O3 or Fe present. Fuel 127, 169–177.

Chakraborty, N., Kolla, H., Sankaran, R., Hawkes, E.R., Chen, J.H., Swaminathan, N., 2013. Determination of threedimensional quantities related to scalar dissipation rate and its transport from two-dimensional measurements: Direct numerical simulation based validation. Proc. Combust. Inst. 34, 1151–1162.

Chakraborty, N., Swaminathan, N., 2013. Reynolds number effects on scalar dissipation rate transport and its modeling in turbulent premixed combustion. Combust. Sci. Technol. 185, 676–709.

Champagne, S., Lu, D.Y., MacChi, A., Symonds, R.T., Anthony, E.J., 2013. Influence of steam injection during calcination on the reactivity of CaO-based sorbent for carbon capture. Ind. Eng. Chem. Res. 52, 2241–2246.

Chan, K., Ordys, A., Volkov, K., Duran, O., 2013. Comparison of engine simulation software for development of control system. Model. Simul. Eng. 2013.

Chan, K.Y., Ordys, A., Duran, O., Volkov, K., Deng, J., 2013. SI engine simulation using residual gas and neural network modeling to virtually estimate the fuel composition, in: Lecture Notes in Engineering and Computer Science. pp. 897–903.

Chatakonda, O., Hawkes, E.R., Aspden, A.J., Kerstein, A.R., Kolla, H., Chen, J.H., 2013. On the fractal characteristics of low Damk{ö}hler number flames. Combust. Flame 160, 2422–2433.

Chatzopoulos, A.K., Rigopoulos, S., 2013. A chemistry tabulation approach via rate-controlled constrained equilibrium (RCCE) and artificial neural networks (ANNs), with application to turbulent non-premixed CH4/H2/N2 flames. Proc. Combust. Inst. 34, 1465–1473.

Chen, D., Akroyd, J., Mosbach, S., Kraft, M., 2014a. Surface reactivity of polycyclic aromatic hydrocarbon clusters. Proc. Combust. Inst.

Chen, D., Akroyd, J., Mosbach, S., Opalka, D., Kraft, M., 2014b. Solid-liquid transitions in homogenous ovalene, hexabenzocoronene and circumcoronene clusters: A molecular dynamics study. Combust. Flame.

Chen, D., Totton, T.S., Akroyd, J., Mosbach, S., Kraft, M., 2014c. Phase change of polycyclic aromatic hydrocarbon clusters by mass addition. Carbon N. Y. 77, 25–35.

Chen, D., Totton, T.S., Akroyd, J.W.J., Mosbach, S., Kraft, M., 2014d. Size-dependent melting of polycyclic aromatic hydrocarbon nano-clusters: A molecular dynamics study. Carbon N. Y. 67, 79–91.

Chen, D., Zainuddin, Z., Yapp, E., Akroyd, J., Mosbach, S., Kraft, M., 2013. A fully coupled simulation of PAH and soot growth with a population balance model. Proc. Combust. Inst. 34, 1827–1835.

Chen, Z., Wen, J., Xu, B., Dembele, S., 2014a. Extension of the eddy dissipation concept and smoke point soot model to the les frame for fire simulations. Fire Saf. J. 64, 12–26.

Chen, Z., Wen, J., Xu, B., Dembele, S., 2014b. Large eddy simulation of a medium-scale methanol pool fire using the extended eddy dissipation concept. Int. J. Heat Mass Transf. 70, 389–408.

Church, P., Cornish, R., Cullis, I., Gould, P., Lewtas, I., 2014. Using the split Hopkinson pressure bar to validate material models. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 372.

Clements, A.G., Porter, R., Pranzitelli, A., Pourkashanian, M., 2015. Evaluation of FSK models for radiative heat transfer under oxyfuel conditions. J. Quant. Spectrosc. Radiat. Transf. 151, 67–75.

Cowlard, A., Bittern, A., Abecassis-Empis, C., Torero, J., 2013. Fire safety design for tall buildings, in: Procedia Engineering. pp. 169–181.

Daood, S.S., Javed, M.T., Gibbs, B.M., Nimmo, W., 2013. NOx control in coal combustion by combining biomass cofiring, oxygen enrichment and SNCR. Fuel 105, 283–292.

Daood, S.S., Javed, M.T., Rizvi, A.H., Nimmo, W., 2014a. Combustion of Pakistani lignite (Thar Coal) in a pilot-scale pulverized fuel down-fired combustion test facility. Energy and Fuels 28, 1541–1547.

Daood, S.S., Ord, G., Wilkinson, T., Nimmo, W., 2014b. Investigation of the influence of metallic fuel improvers on coal combustion/pyrolysis. Energy and Fuels 28, 1515–1523.

Daood, S.S., Ord, G., Wilkinson, T., Nimmo, W., 2014c. Fuel additive technology – NOx reduction, combustion efficiency and fly ash improvement for coal fired power stations. Fuel 134, 293–306.

Darvell, L.I., Ma, L., Jones, J.M., Pourkashanian, M., Williams, A., 2014. Some aspects of modeling NOx formation arising from the combustion of 100% wood in a pulverized fuel furnace. Combust. Sci. Technol. 186, 672–683.

Davies, G.M., Gray, A., Rein, G., Legg, C.J., 2013. Peat consumption and carbon loss due to smouldering wildfire in a temperate peatland. For. Ecol. Manage. 308, 169–177.

Degereji, M.U., Gubba, S.R., Ingham, D.B., Ma, L., Pourkashanian, M., Williams, A., Williamson, J., 2013. Predicting the slagging potential of co-fired coal with sewage sludge and wood biomass. Fuel 108, 550–556.

Dembele, S., Wen, J.X., 2014. Analysis of the screening of hydrogen flares and flames thermal radiation with water sprays. Int. J. Hydrogen Energy 39, 6146–6159.

Diez, A., Crookes, R.J., Løvås, T., 2013. Experimental studies of autoignition and soot formation of diesel surrogate fuels. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 227, 656–664.

Dunstan, T.D., Minamoto, Y., Chakraborty, N., Swaminathan, N., 2013a. Scalar dissipation rate modelling for large eddy simulation of turbulent premixed flames. Proc. Combust. Inst. 34, 1193–1201.

Dunstan, T.D., Swaminathan, N., Bray, K.N.C., Kingsbury, N.G., 2013b. Flame interactions in turbulent premixed twin Vflames. Combust. Sci. Technol. 185, 134–159.

Dunstan, T.D., Swaminathan, N., Bray, K.N.C., Kingsbury, N.G., 2013c. The effects of non-unity lewis numbers on turbulent premixed flame interactions in a twin V-flame configuration. Combust. Sci. Technol. 185, 874–897.

Emelyanov, V.N., Volkov, K.N., 2014. Numerical simulation of laser-induced detonation in mixture of hydrogen with suspended metal particles. Int. J. Hydrogen Energy 39, 6222–6232.

Eveleigh, A., Ladommatos, N., Balachandran, R., Marca, A., 2014. Conversion of oxygenated and hydrocarbon molecules to particulate matter using stable isotopes as tracers. Combust. Flame.

Ezekoye, O.A., Hurley, M.J., Torero, J.L., McGrattan, K.B., 2013. Applications of heat transfer fundamentals to fire modeling. J. Therm. Sci. Eng. Appl. 5.

Fialkov, A.B., Hayhurst, A.N., Taylor, S.G., Newcomb, S.B., 2013. Shapes of Soot Particles, Both Charged and Uncharged, after Molecular Beam Sampling a Premixed Oxyacetylene Flame, Burning at Atmospheric Pressure. Combust. Sci. Technol. 185, 1762–1776.

Fond, B., Abram, C., Beyrau, F., 2014. Thermographic particle image velocimetry, in: Optics InfoBase Conference Papers.

Gao, Y., Chakraborty, N., Swaminathan, N., 2014a. Local strain rate and curvature dependences of scalar dissipation rate transport in turbulent premixed flames: A direct numerical simulation analysis. J. Combust. 2014.

Gao, Y., Chakraborty, N., Swaminathan, N., 2014b. Algebraic closure of scalar dissipation rate for large eddy simulations of turbulent premixed combustion. Combust. Sci. Technol. 186, 1309–1337.

Garba, M.U., Ingham, D.B., Ma, L., Degereji, M.U., Pourkashanian, M., Williams, A., 2013. Modelling of deposit formation and sintering for the co-combustion of coal with biomass. Fuel.

Gemayel, J.E., Macchi, A., Hughes, R., Anthony, E.J., 2014. Simulation of the integration of a bitumen upgrading facility and an IGCC process with carbon capture. Fuel 117, 1288–1297.

Goh, K.H.H., Geipel, P., Hampp, F., Lindstedt, R.P., 2013a. Flames in fractal grid generated turbulence. Fluid Dyn. Res. 45.

Goh, K.H.H., Geipel, P., Hampp, F., Lindstedt, R.P., 2013b. Regime transition from premixed to flameless oxidation in turbulent JP-10 flames. Proc. Combust. Inst. 34, 3311–3318.

Goh, K.H.H., Geipel, P., Lindstedt, R.P., 2014a. Turbulent transport in premixed flames approaching extinction. Proc. Combust. Inst.

Goh, K.H.H., Geipel, P., Lindstedt, R.P., 2014b. Lean premixed opposed jet flames in fractal grid generated multiscale turbulence. Combust. Flame 161, 2419–2434.

Goldsmith, C.F., Tomlin, A.S., Klippenstein, S.J., 2013. Uncertainty propagation in the derivation of phenomenological rate coefficients from theory: A case study of n-propyl radical oxidation. Proc. Combust. Inst. 34, 177–185.

Hadden, R., Alkatib, A., Rein, G., Torero, J.L., 2014. Radiant Ignition of Polyurethane Foam: The Effect of Sample Size. Fire Technol. 50, 673–691.

Hamzehloo, A., Aleiferis, P., 2013. Computational study of hydrogen direct injection for internal combustion engines. SAE Tech. Pap. 11.

Harrison, A., Cracknell, R.F., Krueger-Venus, J., Sarkisov, L., 2014. Branched versus linear alkane adsorption in carbonaceous slit pores. Adsorption 20, 427–437.

Hayhurst, A.N., 2013. The kinetics of the pyrolysis or devolatilisation of sewage sludge and other solid fuels. Combust. Flame 160, 138–144.

Hayhurst, A.N., Goodings, J.M., Taylor, S.G., 2014. The effects of applying electric fields on the mass spectrometric sampling of positive and negative ions from a flame at atmospheric pressure. Combust. Flame.

Hendrickson, J.R., Schmer, M.R., Sanderson, M.A., 2013. Water Use Efficiency by Switchgrass Compared to a Native Grass or a Native Grass Alfalfa Mixture. Bioenergy Res. 6, 746–754.

Herrando, M., Markides, C.N., Hellgardt, K., 2014. A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance. Appl. Energy 122, 288–309.

Hinton, N., Stone, R., 2014. Laminar burning velocity measurements of methane and carbon dioxide mixtures (biogas) over wide ranging temperatures and pressures. Fuel 116, 743–750.

Hu, Z., Somers, L.M.T., Davies, T., McDougall, A., Cracknell, R.F., 2013. A study of liquid fuel injection and combustion in a constant volume vessel at diesel engine conditions. Fuel 107, 63–73.

Huang, X., Rein, G., 2014. Smouldering combustion of peat in wildfires: Inverse modelling of the drying and the thermal and oxidative decomposition kinetics. Combust. Flame 161, 1633–1644.

Huang, X., Rein, G., Chen, H., 2014. Computational smoldering combustion: Predicting the roles of moisture and inert contents in peat wildfires. Proc. Combust. Inst.

Hughes, K.J., Brindley, J., McIntosh, A.C., 2013. Initiation and propagation of combustion waves with competitive reactions and water evaporation. Proc. R. Soc. A Math. Phys. Eng. Sci. 469.

Ibrahim, R.H.H., Darvell, L.I., Jones, J.M., Williams, A., 2013. Physicochemical characterisation of torrefied biomass. J. Anal. Appl. Pyrolysis 103, 21–30.

Ihracska, B., Korakianitis, T., Ruiz, P., Emberson, D.R., Crookes, R.J., Diez, A., Wen, D., 2014. Assessment of elliptic flame front propagation characteristics of iso-octane, gasoline, M85 and E85 in an optical engine. Combust. Flame 161, 696–710.

Ihracska, B., Wen, D., Imran, S., Emberson, D.R., Ruiz, L.M., Crookes, R.J., Korakianitis, T., 2013. Assessment of elliptic flame front propagation characteristics of hydrogen in an optically accessible spark ignition engine. Int. J. Hydrogen Energy 38, 15452–15468.

Imran, S., Emberson, D.R., Diez, A., Wen, D.S., Crookes, R.J., Korakianitis, T., 2014a. Natural gas fueled compression ignition engine performance and emissions maps with diesel and RME pilot fuels. Appl. Energy 124, 354–365.

Imran, S., Emberson, D.R., Ihracska, B., Wen, D.S., Crookes, R.J., Korakianitis, T., 2014b. Effect of pilot fuel quantity and type on performance and emissions of natural gas and hydrogen based combustion in a compression ignition engine. Int. J. Hydrogen Energy 39, 5163–5175.

Imran, S., Emberson, D.R., Wen, D.S., Diez, A., Crookes, R.J., Korakianitis, T., 2013. Performance and specific emissions contours of a diesel and RME fueled compression-ignition engine throughout its operating speed and power range. Appl. Energy 111, 771–777.

Jackson, C.R.M., Cheek, L.C., Williams, K.B., Hanna, K.D., Pieters, C.M., Parman, S.W., Cooper, R.F., Dyar, M.D., Nelms, M., Salvatore, M.R., 2014. The second conference on the lunar highlands crust and new directions. Visible-infrared spectral properties of iron-bearing aluminate spinel under lunar-like redox conditions. Am. Mineral. 99, 1821– 1833.

Jacques, D.A., Gooding, J., Giesekam, J.J., Tomlin, A.S., Crook, R., 2014. Methodology for the assessment of PV capacity over a city region using low-resolution LiDAR data and application to the City of Leeds (UK). Appl. Energy 124, 28–34.

Jiang, Y., Kotsovinos, P., Usmani, A., Rein, G., Stern-Gottfried, J., 2013a. Numerical investigation of thermal responses of a composite structure in horizontally travelling fires using OpenSees, in: Procedia Engineering. pp. 736–744. Jiang, Y., Rein, G., Welch, S., Usmani, A., 2013b. Modeling fire-induced radiative heat transfer in smoke-filled structural cavities. Int. J. Therm. Sci. 66, 24–33.

Jones, W.P., Marquis, A.J., Vogiatzaki, K., 2014. Large-eddy simulation of spray combustion in a gas turbine combustor. Combust. Flame 161, 222–239.

Kamal, M., Balusamy, S., Zhou, R., Hochgreb, S., 2014. Favre- and Reynolds-averaged velocity measurements: interpreting PIV and LDA measurements in combustion. Proc. Combust. Inst. accepted.

Kariuki, J., Dowlut, A., Yuan, R., Balachandran, R., Mastorakos, E., 2014. Heat release imaging in turbulent premixed methane-air flames close to blow-off. Proc. Combust. Inst.

Kastner, C.A., Braumann, A., Man, P.L.W., Mosbach, S., Brownbridge, G.P.E., Akroyd, J., Kraft, M., Himawan, C., 2013a. Bayesian parameter estimation for a jet-milling model using Metropolis-Hastings and Wang-Landau sampling. Chem. Eng. Sci. 89, 244–257.

Kastner, C.A., Brownbridge, G.P.E., Mosbach, S., Kraft, M., 2013b. Corrigendum to “Impact of powder characteristics on a particle granulation model” [Chem. Eng. Sci. 97 (2013) 282-295]. Chem. Eng. Sci. 99, 102.

Kastner, C.A., Brownbridge, G.P.E., Mosbach, S., Kraft, M., 2013c. Impact of powder characteristics on a particle granulation model. Chem. Eng. Sci. 97, 282–295.

Katragadda, M., Gao, Y., Chakraborty, N., 2014. Modeling of the strain rate contribution to the flame surface density transport for non-unity lewis number flames in large eddy simulations. Combust. Sci. Technol. 186, 1338–1369.

Kaul, C.M., Raman, V., Knudsen, E., Richardson, E.S., Chen, J.H., 2013. Large eddy simulation of a lifted ethylene flame using a dynamic nonequilibrium model for subfilter scalar variance and dissipation rate. Proc. Combust. Inst. 34, 1289–1297.

Kavosh, M., Patchigolla, K., Anthony, E.J., Oakey, J.E., 2014. Carbonation performance of lime for cyclic CO2 capture following limestone calcination in steam/CO2 atmosphere. Appl. Energy 131, 499–507.

Keenan, J.J., Makarov, D. V, Molkov, V. V, 2014. Rayleigh-Taylor instability: Modelling and effect on coherent deflagrations. Int. J. Hydrogen Energy.

Kerkemeier, S.G., Markides, C.N., Frouzakis, C.E., Boulouchos, K., 2013. Direct numerical simulation of the autoignition of a hydrogen plume in a turbulent coflow of hot air. J. Fluid Mech. 720, 424–456.

Kountouriotis, A., Aleiferis, P.G., Charalambides, A.G., 2014. Numerical investigation of VOC levels in the area of petrol stations. Sci. Total Environ. 470-471, 1205–1224.

Kuhl, A.L., Bell, J.B., Beckner, V.E., Balakrishnan, K., Aspden, A.J., 2013. Spherical combustion clouds in explosions. Shock Waves 23, 233–249.

Labecki, L., Lindner, A., Winklmayr, W., Uitz, R., Cracknell, R., Ganippa, L., 2013. Effects of injection parameters and EGR on exhaust soot particle number-size distribution for diesel and RME fuels in HSDI engines. Fuel 112, 224– 235.

Larsen, K.J., Burns, A.D., Gubba, S.R., Ingham, D.B., Ma, L., Pourkashanian, M., Williams, A., 2013. Pulverised coal and biomass co-Combustion: Particle flow modelling in a swirl burner. J. Energy Inst. 86, 220–226.

Lawal, M.S., Fairweather, M., Gogolek, P., Gubba, S.R., Ingham, D.B., Ma, L., Pourkashanian, M., Williams, A., 2013a. Large eddy simulations of wake-stabilised flares. Fuel Process. Technol. 112, 35–47.

Lawal, M.S., Fairweather, M., Gogolek, P., Ingham, D.B., Ma, L., Pourkashanian, M., Williams, A., 2013b. CFD predictions of wake-stabilised jet flames in a cross-flow. Energy 53, 259–269.

Lea-Langton, A.R., Ross, A.B., Bartle, K.D., Andrews, G.E., Jones, J.M., Li, H., Pourkashanian, M., Williams, A., 2013. Low temperature PAH formation in diesel combustion. J. Anal. Appl. Pyrolysis 103, 119–125.

Leach, F., Stone, R., Richardson, D., 2013. The influence of fuel properties on particulate number emissions from a direct injection spark ignition engine. SAE Tech. Pap. 2.

Lee, K.F., Davidson, J.F., Akroyd, J., Kraft, M., 2014. Lifting a buried object: Reverse hopper theory. Chem. Eng. Sci. 105, 198–207.

Leroy-Cancellieri, V., Cancellieri, D., Leoni, E., Simeoni, A., Filkov, A.I., 2014. Energetic potential and kinetic behavior of peats. J. Therm. Anal. Calorim.

Linge, F., Hye, M.A., Paul, M.C., 2014. Pulsatile spiral blood flow through arterial stenosis. Comput. Methods Biomech. Biomed. Engin. 17, 1727–1737.

Liu, K., Alexander, V., Sanderson, V., Bulat, G., 2013a. Extension of fuel flexibility in the siemens dry low emissions SGT- 300-1S to cover a wobbe index range of 15 to 49 MJ/Sm3. J. Eng. Gas Turbines Power 135. 16

Liu, K., Martin, P., Sanderson, V., Hubbard, P., 2013b. Effect of change in fuel compositions and heating value on ignition and performance for siemens SGT-400 DRY low emission combustion system, in: Proceedings of the ASME Turbo Expo.

Liu, K., Martin, P., Sanderson, V., Hubbard, P., 2014. Effect of change in fuel compositions and heating value on ignition and performance for siemens SGT-400 dry low emission combustion system. J. Eng. Gas Turbines Power 136.

Liu, K., Sanderson, V., 2013. The influence of changes in fuel calorific value to combustion performance for Siemens SGT-300 dry low emission combustion system. Fuel 103, 239–246.

Liu, Y., Dowling, A.P., Swaminathan, N., Morvant, R., Macquisten, M.A., Caracciolo, L.F., 2014. Prediction of combustion noise for an aeroengine combustor. J. Propuls. Power 30, 114–122.

Maffioli, A., Davidson, P.A., Dalziel, S.B., Swaminathan, N., 2014. The evolution of a stratified turbulent cloud. J. Fluid Mech. 739, 229–253.

Makarov, D., Molkov, V., 2013. Plane hydrogen jets. Int. J. Hydrogen Energy 38, 8068–8083.

Malkeson, S.P., Ruan, S., Chakraborty, N., Swaminathan, N., 2013. Statistics of reaction progress variable and mixture fraction gradients from DNS of turbulent partially premixed flames. Combust. Sci. Technol. 185, 1329–1359.

Manovic, V., Fennell, P.S., Al-Jeboori, M.J., Anthony, E.J., 2013. Steam-enhanced calcium looping cycles with calcium aluminate pellets doped with bromides. Ind. Eng. Chem. Res. 52, 7677–7683.

Mansouri, N.Y., Crookes, R.J., Korakianitis, T., 2013. A projection of energy consumption and carbon dioxide emissions in the electricity sector for Saudi Arabia: The case for carbon capture and storage and solar photovoltaics. Energy Policy 63, 681–695.

Markides, C.N., 2013. The role of pumped and waste heat technologies in a high-efficiency sustainable energy future for the UK. Appl. Therm. Eng. 53, 197–209.

Markides, C.N., Chakraborty, N., 2013. Statistics of the scalar dissipation rate using direct numerical simulations and planar laser-induced fluorescence data. Chem. Eng. Sci. 90, 221–241.

Markides, C.N., Gupta, A., 2013. Experimental investigation of a thermally powered central heating circulator: Pumping characteristics. Appl. Energy 110, 132–146.

Markides, C.N., Osuolale, A., Solanki, R., Stan, G.B. V, 2013. Nonlinear heat transfer processes in a two-phase thermofluidic oscillator. Appl. Energy 104, 958–977.

Markides, C.N., Solanki, R., Galindo, A., 2014. Working fluid selection for a two-phase thermofluidic oscillator: Effect of thermodynamic properties. Appl. Energy 124, 167–185.

Mathie, R., Markides, C.N., 2013a. Heat transfer augmentation in convecting film flows, in: ASME 2013 Heat Transfer Summer Conf. Collocated with the ASME 2013 7th Int. Conf. on Energy Sustainability and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, HT 2013.

Mathie, R., Markides, C.N., 2013b. Heat transfer augmentation in unsteady conjugate thermal systems – Part I: Semianalytical 1-D framework. Int. J. Heat Mass Transf. 56, 802–818.

Mathie, R., Markides, C.N., White, A.J., 2014. A framework for the analysis of thermal losses in reciprocating compressors and expanders. Heat Transf. Eng. 35, 1435–1449.

Mathie, R., Nakamura, H., Markides, C.N., 2013. Heat transfer augmentation in unsteady conjugate thermal systems – Part II: Applications. Int. J. Heat Mass Transf. 56, 819–833.

Meier, U., Freitag, S., Heinze, J., Lange, L., Magens, E., Schroll, M., Willert, C., Hassa, C., Bagchi, I.K., Lazik, W., Whiteman, M., 2013. Characterization of lean burn module air blast pilot injector with laser techniques. J. Eng. Gas Turbines Power 135.

Menkiel, B., Donkerbroek, A., Uitz, R., Cracknell, R., Ganippa, L., 2014. Combustion and soot processes of diesel and rapeseed methyl ester in an optical diesel engine. Fuel 118, 406–415.

Menz, W.J., Akroyd, J., Kraft, M., 2014. Stochastic solution of population balance equations for reactor networks. J. Comput. Phys. 256, 615–629.

Menz, W.J., Patterson, R.I.A., Wagner, W., Kraft, M., 2013. Application of stochastic weighted algorithms to a multidimensional silica particle model. J. Comput. Phys. 248, 221–234.

Millward-Hopkins, J.T., Tomlin, A.S., Ma, L., Ingham, D.B., Pourkashanian, M., 2013a. Assessing the potential of urban wind energy in a major UK city using an analytical model. Renew. Energy 60, 701–710.

Millward-Hopkins, J.T., Tomlin, A.S., Ma, L., Ingham, D.B., Pourkashanian, M., 2013b. Aerodynamic Parameters of a UK City Derived from Morphological Data. Boundary-Layer Meteorol. 146, 447–468.

Millward-Hopkins, J.T., Tomlin, A.S., Ma, L., Ingham, D.B., Pourkashanian, M., 2013c. Mapping the wind resource over UK cities. Renew. Energy 55, 202–211.

Minamoto, Y., Dunstan, T.D., Swaminathan, N., Cant, R.S., 2013. DNS of EGR-type turbulent flame in MILD condition. Proc. Combust. Inst. 34, 3231–3238.

Minamoto, Y., Swaminathan, N., 2014a. Subgrid scale modelling for MILD combustion. Proc. Combust. Inst.

Minamoto, Y., Swaminathan, N., 2014b. Scalar gradient behaviour in MILD combustion. Combust. Flame 161, 1063– 1075.

Minamoto, Y., Swaminathan, N., Cant, R.S., Leung, T., 2014a. Reaction zones and their structure in MILD combustion. Combust. Sci. Technol. 186, 1075–1096.

Minamoto, Y., Swaminathan, N., Cant, S.R., Leung, T., 2014b. Morphological and statistical features of reaction zones in MILD and premixed combustion. Combust. Flame.

Molkov, V., Saffers, J.-B., 2013. Hydrogen jet flames. Int. J. Hydrogen Energy 38, 8141–8158.

Molkov, V., Shentsov, V., 2014. Numerical and physical requirements to simulation of gas release and dispersion in an enclosure with one vent. Int. J. Hydrogen Energy 39, 13328–13345.

Molkov, V., Shentsov, V., Brennan, S., Makarov, D., 2014a. Hydrogen non-premixed combustion in enclosure with one vent and sustained release: Numerical experiments. Int. J. Hydrogen Energy 39, 10788–10801.

Molkov, V., Shentsov, V., Quintiere, J., 2014b. Passive ventilation of a sustained gaseous release in an enclosure with one vent. Int. J. Hydrogen Energy 39, 8158–8168.

Morgan, R.G., Markides, C.N., Zadrazil, I., Hewitt, G.F., 2013. Characteristics of horizontal liquid-liquid flows in a circular pipe using simultaneous high-speed laser-induced fluorescence and particle velocimetry. Int. J. Multiph. Flow 49, 99–118.

Mosbach, S., Hong, J.H., Brownbridge, G.P.E., Kraft, M., Gudiyella, S., Brezinsky, K., 2014. Bayesian error propagation for a kinetic model of n-propylbenzene oxidation in a shock tube. Int. J. Chem. Kinet. 46, 389–404.

Nikolaou, Z.M., Chen, J.-Y., Swaminathan, N., 2013. A 5-step reduced mechanism for combustion of CO/H2/H2O/CH4/CO2 mixtures with low hydrogen/methane and high H2O content. Combust. Flame 160, 56– 75.

Nikolaou, Z.M., Swaminathan, N., 2014. Heat release rate markers for premixed combustion. Combust. Flame.

Nikolaou, Z.M., Swaminathan, N., Chen, J.-Y., 2014. Evaluation of a reduced mechanism for turbulent premixed combustion. Combust. Flame 161, 3085–3099.

Nurkowski, D., Buerger, P., Akroyd, J., Kraft, M., 2014. A detailed kinetic study of the thermal decomposition of tetraethoxysilane. Proc. Combust. Inst.

Olney, K.L., Chiu, P.-H., Nesterenko, V.F., Benson, D.J., Braithwaite, C., Collins, A., Williamson, D., McKenzie, F., 2013. The fragmentation of Al-W granular composites under explosive loading, in: Materials Research Society Symposium Proceedings. pp. 25–30.

Oni, T.O., Paul, M.C., 2014. Numerical simulation of turbulent heat transfer and fluid flow in different tube designs, in: Lecture Notes in Engineering and Computer Science. pp. 1441–1446.

Patterson, R.I.A., 2013. Convergence of Stochastic Particle Systems Undergoing Advection and Coagulation. Stoch. Anal. Appl. 31, 800–829.

Petkova, D., Donchev, T., Wen, J., 2014. Experimental study of the performance of CFRP strengthened small scale beams after heating to high temperatures. Constr. Build. Mater. 68, 55–61.

Pickard, S., Daood, S.S., Nimmo, W., Lord, R., Pourkashanian, M., 2013a. Bio-CCS: Co-firing of established greenfield and novel, brownfield biomass resources under air, oxygen-enriched air and oxy-fuel conditions, in: Energy Procedia. pp. 6062–6069.

Pickard, S., Daood, S.S., Pourkashanian, M., Nimmo, W., 2013b. Robust extension of the coats-redfern technique: Reviewing rapid and realiable reactivity analysis of complex fuels decomposing in inert and oxidizing thermogravimetric analysis atmospheres. Energy and Fuels 27, 2818–2826.

Pickard, S., Daood, S.S., Pourkashanian, M., Nimmo, W., 2014a. Reactivity during bench-scale combustion of biomass fuels for carbon capture and storage applications. Fuel 134, 166–170.

Pickard, S., Daood, S.S., Pourkashanian, M., Nimmo, W., 2014b. Reactivity during bench-scale combustion of biomass fuels for carbon capture and storage applications. Fuel 134, 171–179.

Pickard, S.C., Daood, S.S., Pourkashanian, M., Nimmo, W., 2014. Co-firing coal with biomass in oxygen- and carbon dioxide-enriched atmospheres for CCS applications. Fuel 137, 185–192.

Pollet, B.G., Staffell, I., Shang, J.L., Molkov, V., 2014. Fuel-cell (hydrogen) electric hybrid vehicles, Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance: Towards Zero Carbon Transportation.

Probyn, M., Thornber, B., Drikakis, D., Youngs, D., Williams, R., 2014. An investigation into nonlinear growth rate of two-dimensional and three-dimensional single-mode richtmyer-meshkov instability using an arbitrary-lagrangianeulerian algorithm. J. Fluids Eng. Trans. ASME 136.

Purvis, J.A., Mistry, R.D., Markides, C.N., Matar, O.K., 2013. An experimental investigation of fingering instabilities and growth dynamics in inclined counter-current gas-liquid channel flow. Phys. Fluids 25.

Rabl, S., Davies, T.J., McDougall, A.P., Cracknell, R.F., 2014. Understanding the relationship between ignition delay and burn duration in a constant volume vessel at diesel engine conditions. Proc. Combust. Inst.

Rana, Z.A., Thornber, B., Drikakis, D., 2013. Dynamics of sonic hydrogen jet injection and mixing inside scramjet combustor. Eng. Appl. Comput. Fluid Mech. 7, 13–39.

Read, R.W., Rogerson, J.W., Hochgreb, S., 2013. Planar Laser-Induced Fluorescence Fuel Imaging During Gas-Turbine Relight. J. Propuls. Power 29, 961–974.

Rein, G., 2013a. 9/11 World Trade Center Attacks: Lessons in Fire Safety Engineering After the Collapse of the Towers. Fire Technol. 49, 583–585.

Rein, G., 2013b. Smouldering Fires and Natural Fuels, Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science.

Rein, G., 2014. Even Greater than the Sum of Its Parts. Fire Technol. 50, 1.

Ridha, F.N., Manovic, V., Macchi, A., Anthony, M.A., Anthony, E.J., 2013a. Assessment of limestone treatment with organic acids for CO2 capture in Ca-looping cycles. Fuel Process. Technol. 116, 284–291.

Ridha, F.N., Manovic, V., Wu, Y., Macchi, A., Anthony, E.J., 2013b. Pelletized CaO-based sorbents treated with organic acids for enhanced CO2 capture in Ca-looping cycles. Int. J. Greenh. Gas Control 17, 357–365.

Ridha, F.N., Manovic, V., Wu, Y., Macchi, A., Anthony, E.J., 2013c. Post-combustion CO2 capture by formic acidmodified CaO-based sorbents. Int. J. Greenh. Gas Control 16, 21–28.

Rios, O., Jahn, W., Rein, G., 2014. Forecasting wind-driven wildfires using an inverse modelling approach. Nat. Hazards Earth Syst. Sci. 14, 1491–1503.

Ruan, S., Swaminathan, N., Darbyshire, O., 2014a. Modelling of turbulent lifted jet flames using flamelets: A priori assessment and a posteriori validation. Combust. Theory Model. 18, 295–329.

Ruan, S., Swaminathan, N., Mizobuchi, Y., 2014b. Investigation of flame stretch in turbulent lifted jet flame. Combust. Sci. Technol. 186, 243–272.

Ruff, G.A., Urban, D.L., Fernandez-Pello, C., T’Ien, J.S., Torero, J.L., Legros, G., Eigenbrod, C., Smirnov, N., Fujita, O., Cowlard, A.J., Rouvreau, S., Minster, O., Toth, B., Jomaas, G., 2013. Development of large-scale spacecraft fire safety experiments, in: 43rd International Conference on Environmental Systems.

Saffers, J.-B., Molkov, V. V, 2013. Towards hydrogen safety engineering for reacting and non-reacting hydrogen releases. J. Loss Prev. Process Ind. 26, 344–350.

Saffers, J.-B., Molkov, V. V, 2014. Hydrogen safety engineering framework and elementary design safety tools. Int. J. Hydrogen Energy 39, 6268–6285.

Saha, A., Abram, D.N., Kuhl, K.P., Paradis, J., Crawford, J.L., Sasmaz, E., Chang, R., Jaramillo, T.F., Wilcox, J., 2013. An X-ray photoelectron spectroscopy study of surface changes on brominated and sulfur-treated activated carbon sorbents during mercury capture: Performance of pellet versus fiber sorbents. Environ. Sci. Technol. 47, 13695– 13701.

Saha, G., Paul, M.C., 2014. Numerical analysis of the heat transfer behaviour of water based Al2O3 and TiO2 nanofluids in a circular pipe under the turbulent flow condition. Int. Commun. Heat Mass Transf. 56, 96–108. Sazhin, S.S., Elwardany, A.E., Gusev, I.G., Xie, J.-F., Shishkova, I.N., Cao, B.-Y., Snegirev, A.Y., Heikal, M.R., 2013. New models for droplet heating and evaporation. Asian J. Sci. Res. 6, 177–186.

Schmidt, W., Almgren, A.S., Braun, H., Engels, J.F., Niemeyer, J.C., Schulz, J., Mekuria, R.R., Aspden, A.J., Bell, J.B., 2013. Cosmological fluid mechanics with adaptively refined large eddy simulations. Mon. Not. R. Astron. Soc. 440, 3051–3077.

Serras-Pereira, J., Aleiferis, P.G., Richardson, D., 2013a. An analysis of the combustion behavior of ethanol, butanol, isooctane, gasoline, and methane in a direct-injection spark-ignition research engine. Combust. Sci. Technol. 185, 484–513.

Serras-Pereira, J., Aleiferis, P.G., Walmsley, H.L., Davies, T.J., Cracknell, R.F., 2013b. Heat flux characteristics of spray wall impingement with ethanol, butanol, iso-octane, gasoline and E10 fuels. Int. J. Heat Fluid Flow 44, 662–683.

Shanmuganathan, S., Youngs, D.L., Griffond, J., Thornber, B., Williams, R.J.R., 2014. Accuracy of high-order densitybased compressible methods in low Mach vortical flows. Int. J. Numer. Methods Fluids 74, 335–358.

Sharma, U.K., Kumar, V., Kamath, P., Singh, B., Bhargava, P., Singh, Y., Usmani, A., Torero, J., Gillie, M., Pankaj, P., 2014. Testing of full-scale RC frame under simulated fire following earthquake. J. Struct. Fire Eng. 5, 215–228.

Shinjo, J., Xia, J., Umemura, A., 2014. Droplet/ligament modulation of local small-scale turbulence and scalar mixing in a dense fuel spray. Proc. Combust. Inst.

Singh, S., Nimmo, W., Williams, P.T., 2013. An experimental study of ash behaviour and the potential fate of ZnO/Zn in the Co-combustion of pulverised South African coal and waste tyre rubber. Fuel 111, 269–279.

Smallbone, A., Bhave, A., Hillman, M., Saville, A., McDavid, R., 2013a. Virtual performance and emissions mapping for diesel engine design optimization. SAE Tech. Pap. 2.

Smallbone, A., Bhave, A., Morgan, N., Mühlbauer, W., Lorenz, S., Brueggemann, D., 2013b. Combustion and emissions performance analysis of conventional and future fuels using advanced CAE. SAE Tech. Pap. 11.

Smolentsev, S., Badia, S., Bhattacharyay, R., Bühler, L., Chen, L., Huang, Q., Jin, H.-G., Krasnov, D., Lee, D.-W., de les Valls, E.M., Mistrangelo, C., Munipalli, R., Ni, M.-J., Pashkevich, D., Patel, A., Pulugundla, G., Satyamurthy, P., Snegirev, A., Sviridov, V., Swain, P., Zhou, T., Zikanov, O., 2014. An approach to verification and validation of MHD codes for fusion applications. Fusion Eng. Des.

Snegirev, A.Y., 2013. Transient temperature gradient in a single-component vaporizing droplet. Int. J. Heat Mass Transf. 65, 80–94.

Snegirev, A.Y., 2014. Generalized approach to model pyrolysis of flammable materials. Thermochim. Acta 590, 242– 250.

Snegirev, A.Y., Talalov, V.A., Stepanov, V. V, Harris, J.N., 2013. A new model to predict pyrolysis, ignition and burning of flammable materials in fire tests. Fire Saf. J. 59, 132–150.

Snegirev, A.Y., Tsoy, A.S., 2014. Treatment of local extinction in CFD fire modeling. Proc. Combust. Inst.

Solanki, R., Mathie, R., Galindo, A., Markides, C.N., 2013. Modelling of a two-phase thermofluidic oscillator for lowgrade heat utilisation: Accounting for irreversible thermal losses. Appl. Energy 106, 337–354.

Stopper, U., Meier, W., Sadanandan, R., Stöhr, M., Aigner, M., Bulat, G., 2013. Experimental study of industrial gas turbine flames including quantification of pressure influence on flow field, fuel/air premixing and flame shape. Combust. Flame 160, 2103–2118.

Sturgeon, D.W., Rogerson, J.W., Hesselmann, G.J., 2013. Doosan power systems oxycoal{\texttrademark} burner technology development, in: Energy Procedia. pp. 6481–6488.

Switzer, C., Pironi, P., Gerhard, J.I., Rein, G., Torero, J.L., 2014. Volumetric scale-up of smouldering remediation of contaminated materials. J. Hazard. Mater. 268, 51–60.

Syred, A.V.-M.N., Bowen, P., Marsh, R., 2014. Shear flow and central recirculation zone interaction in reactive swirling flows, in: 52nd AIAA Aerospace Sciences Meeting – AIAA Science and Technology Forum and Exposition, SciTech 2014.

Syred, N., Giles, A., Lewis, J., Abdulsada, M., Valera Medina, A., Marsh, R., Bowen, P.J., Griffiths, A.J., 2014a. Effect of inlet and outlet configurations on blow-off and flashback with premixed combustion for methane and a high hydrogen content fuel in a generic swirl burner. Appl. Energy 116, 288–296.

Syred, N., Giles, A., Lewis, J., Valera-Medina, A., Bowen, P., Griffiths, A., 2013a. Tangential velocity effects and correlations for blow-off and flashback in a generic swirl burner and the effect of a hydrogen containing fuel, in: 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 2013.

Syred, N., Lewis, J., Valera-Medina, A., Bowen, P., 2014b. Acoustic streaming effects effects in high intensity swirl burners, in: 52nd AIAA Aerospace Sciences Meeting – AIAA Science and Technology Forum and Exposition, SciTech 2014.

Syred, N., Valera-Medina, A., Bowen, P., 2013b. Improving swirl flow generation, in: 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 2013.

Talibi, M., Hellier, P., Balachandran, R., Ladommatos, N., 2014. Effect of hydrogen-diesel fuel co-combustion on exhaust emissions with verification using an in-cylinder gas sampling technique. Int. J. Hydrogen Energy 39, 15088–15102.

Taylor, B., Xiao, N., Sikorski, J., Yong, M., Harris, T., Helme, T., Smallbone, A., Bhave, A., Kraft, M., 2013. Technoeconomic assessment of carbon-negative algal biodiesel for transport solutions. Appl. Energy 106, 262–274.

Thompson, A., Northern, H., Williams, B., Hamilton, M., Ewart, P., 2014. Simultaneous detection of CO2 and CO in engine exhaust using multi-mode absorption spectroscopy, MUMAS. Sensors Actuators, B Chem. 198, 309–315.

Tomlin, A.S., 2013. The role of sensitivity and uncertainty analysis in combustion modelling. Proc. Combust. Inst. 34, 159–176.

Torero, J.L., 2013a. Scaling-Up fire. Proc. Combust. Inst. 34, 99–124.

Torero, J.L., 2013b. Structures in fire or fires in structures? Assessing the true performance of structures in fire, in: Research and Applications in Structural Engineering, Mechanics and Computation – Proceedings of the 5th International Conference on Structural Engineering, Mechanics and Computation, SEMC 2013. pp. 1919–1923.

Torero, J.L., 2013c. An Introduction to Combustion in Organic Materials, Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science.

Tsembelis, K., Chapman, D.J., Braithwaite, C.H., Field, J.E., Proud, W.G., 2013. The Shock Properties of Concrete and Related Materials, Materials under Extreme Loadings: Application to Penetration and Impact.

Turner, J.W.G., Popplewell, A., Patel, R., Johnson, T.R., Darnton, N.J., Richardson, S., Bredda, S.W., Tudor, R.J., Bithell, C.I., Jackson, R., Remmert, S.M., Cracknell, R.F., Fernandes, J.X., Lewis, A.G.J., Akehurst, S., Brace, C.J., Copeland, C., Martinez-Botas, R., Romagnoli, A., Burluka, A.A., 2014. Ultra Boost for Economy: Extending the Limits of Extreme Engine Downsizing. SAE Int. J. Engines 7, 387–417.

Valera-Medina, A., Syred, N., Bowen, P., 2013. Central recirculation zone visualization in confined swirl combustors for terrestrial energy. J. Propuls. Power 29, 195–204.

Vendra, C.M.R., Wen, J.X., Tam, V.H.Y., 2013. Numerical simulation of turbulent flame-wall quenching using a coherent flame model. J. Loss Prev. Process Ind. 26, 363–368.

Volkov, K., 2013. Large-eddy simulation of turbulence-induced aero-optical effects in free shear and wall bounded flows, Turbulent Flows: Prediction, Modeling and Analysis.

Volkov, K.N., 2013a. Role of compressibility in the formation of the structure of a flow in a channel with permeable walls. J. Eng. Phys. Thermophys. 1–8.

Volkov, K.N., 2013b. Qualitative analysis and numerical simulation of the movement of a particle in a channel having permeable walls with account for the action of mass forces. J. Eng. Phys. Thermophys. 86, 1286–1293.

Volkov, K.N., 2013c. Simulation of a nonstationary flow in a channel with a distributed blow from the channel walls and forced pressure oscillations. J. Eng. Phys. Thermophys. 86, 96–104.

Volkov, K.N., 2013d. Implementation and comparison of various approaches to solving coupled thermal analysis problems on unstructured meshes. Comput. Math. Math. Phys. 53, 503–519.

Volkov, K.N., 2013e. Unsteady turbulent flow of a gas suspension in a channel under conditions of injection and forced pressure oscillations. J. Appl. Mech. Tech. Phys. 54, 224–236.

Volkov, K.N., 2013f. Simulation of a Fluid Flow in a Channel with a Moving Side Surface and Injection. J. Eng. Phys. Thermophys. 1–7.

Volkov, K.N., 2014. Formulation of wall boundary conditions in turbulent flow computations on unstructured meshes. Comput. Math. Math. Phys. 54, 353–367.

Volkov, K.N., Karpenko, A.G., 2014. Computational modeling of free convection between coaxial cylinders on the basis of a preconditioned form of Navier-Stokes equations. J. Eng. Phys. Thermophys. 87, 929–935.

Wacks, D.H., Baggaley, A.W., Barenghi, C.F., 2014. Coherent laminar and turbulent motion of toroidal vortex bundles. Phys. Fluids 26.

Wang, C., Xu, H., Herreros, J.M., Wang, J., Cracknell, R., 2014. Impact of fuel and injection system on particle emissions from a GDI engine. Appl. Energy 132, 178–191.

Wang, C.J., Wen, J.X., Chen, Z.B., 2014a. Simulation of large-scale LNG pool fires using firefoam. Combust. Sci. Technol. 186, 1632–1649.

Wang, C.J., Wen, J.X., Chen, Z.B., Dembele, S., 2014b. Predicting radiative characteristics of hydrogen and hydrogen/methane jet fires using FireFOAM. Int. J. Hydrogen Energy.

Watson, R.J., Botero, M.L., Ness, C.J., Morgan, N.M., Kraft, M., 2013. An improved methodology for determining threshold sooting indices from smoke point lamps. Fuel 111, 120–130.

Weekes, S.M., Tomlin, A.S., 2013a. Evaluation of a semi-empirical model for predicting the wind energy resource relevant to small-scale wind turbines. Renew. Energy 50, 280–288.

Weekes, S.M., Tomlin, A.S., 2013b. Comparison of low-cost wind resource assessment tools for small-scale wind energy installations, in: European Wind Energy Conference and Exhibition, EWEC 2013. pp. 842–850.

Weekes, S.M., Tomlin, A.S., 2014a. Low-cost wind resource assessment for small-scale turbine installations using site pre-screening and short-term wind measurements. IET Renew. Power Gener. 8, 349–358.

Weekes, S.M., Tomlin, A.S., 2014b. Data efficient measure-correlate-predict approaches to wind resource assessment for small-scale wind energy. Renew. Energy 63, 162–171.

Weekes, S.M., Tomlin, A.S., 2014c. Comparison between the bivariate Weibull probability approach and linear regression for assessment of the long-term wind energy resource using MCP. Renew. Energy 68, 529–539.

Weinberg, F.J., Dunn-Rankin, D., Carleton, F.B., Karnani, S., Markides, C., Zhai, M., 2013. Electrical aspects of flame quenching. Proc. Combust. Inst. 34, 3295–3301.

White, A., McTigue, J., Markides, C., 2014. Wave propagation and thermodynamic losses in packed-bed thermal reservoirs for energy storage. Appl. Energy 130, 648–657.

White, A., Parks, G., Markides, C.N., 2013. Thermodynamic analysis of pumped thermal electricity storage. Appl. Therm. Eng. 53, 291–298.

Williams, B., Edwards, M., Stone, R., Williams, J., Ewart, P., 2014. High precision in-cylinder gas thermometry using Laser Induced Gratings: Quantitative measurement of evaporative cooling with gasoline/alcohol blends in a GDI optical engine. Combust. Flame 161, 270–279.

Wilson, J.M., Baeza-Romero, M.T., Jones, J.M., Pourkashanian, M., Williams, A., Lea-Langton, A.R., Ross, A.B., Bartle, K.D., 2013. Soot formation from the combustion of biomass pyrolysis products and a hydrocarbon fuel, n-decane: An aerosol time of flight mass spectrometer (ATOFMS) study. Energy and Fuels 27, 1668–1678.

Woodrow, M., Bisby, L., Torero, J.L., 2013. A nascent educational framework for fire safety engineering. Fire Saf. J. 58, 180–194.

Xia, J., Zhao, H., Megaritis, A., Luo, K.H., Cairns, A., Ganippa, L.C., 2013. Inert-droplet and combustion effects on turbulence in a diluted diffusion flame. Combust. Flame 160, 366–383.

Xu, B.-P., Wen, J., 2014. A droplet collision model based on the concept of particle cloud. Neiranji Xuebao/Transactions CSICE (Chinese Soc. Intern. Combust. Engines) 32, 216–222.

Xu, B.P., Jie, H.E., Wen, J.X., 2014. A pipeline depressurization model for fast decompression and slow blowdown. Int. J. Press. Vessel. Pip.

Xu, B.P., Wen, J.X., 2014. The effect of tube internal geometry on the propensity to spontaneous ignition in pressurized hydrogen release. Int. J. Hydrogen Energy.

Xu, B.P., Wen, J.X., Volkov, K.N., 2013. Large-eddy simulation of vortical structures in a forced plane impinging jet. Eur. J. Mech. B/Fluids 42, 104–120. Zaccone, C., Rein, G., D’Orazio, V., Hadden, R.M., Belcher, C.M., Miano, T.M., 2014. Smouldering fire signatures in peat and their implications for palaeoenvironmental reconstructions. Geochim. Cosmochim. Acta 137, 134–146.

Zadrazil, I., Matar, O.K., Markides, C.N., 2014. An experimental characterization of downwards gas-liquid annular flow by laser-induced fluorescence: Flow regimes and film statistics. Int. J. Multiph. Flow 60, 87–102.

Zhao, C., Chen, X., Anthony, E.J., Jiang, X., Duan, L., Wu, Y., Dong, W., 2013. Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent. Prog. Energy Combust. Sci. 39, 515–534.

Zhao, H., Stone, R., Williams, B., 2014a. Investigation of the soot formation in ethylene laminar diffusion flames when diluted with helium or supplemented by hydrogen. Energy and Fuels 28, 2144–2151.

Zhao, H., Williams, B., Stone, R., 2014b. Measurement of the spatially distributed temperature and soot loadings in a laminar diffusion flame using a Cone-Beam Tomography technique. J. Quant. Spectrosc. Radiat. Transf. 133, 136– 152.

Zhao, Y., Markides, C.N., Matar, O.K., Hewitt, G.F., 2013. Disturbance wave development in two-phase gas-liquid upwards vertical annular flow. Int. J. Multiph. Flow 55, 111–129.

Zhou, R., Balusamy, S., Sweeney, M.S., Barlow, R.S., Hochgreb, S., 2013. Flow field measurements of a series of turbulent premixed and stratified methane/air flames. Combust. Flame 160, 2017–2028.